
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 273 (2004) 295–316

Reducing errors in the identification of structural joint
parameters using error functions

J.H. Wang*, S.C. Chuang

Sound and Vibration Laboratories, Department of Power Mechanical Engineering, National Tsing Hua University,

Hsinchu, Taiwan

Received 11 October 2002; accepted 28 April 2003

Abstract

A new method is proposed to identify the structural joint parameters directly from the frequency
response functions (FRFs) of the substructures and the whole structure. The problem of the measurement
noise with non-Gaussian distribution in the FRFs, and the problem of joints with very different orders of
magnitude are especially discussed in this work. The new method uses an error function to select the best
data to identify the individual parameter so that the new method can function well under different strict
conditions. The accuracy of the new method and other two existing methods is compared under different
conditions in this work.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the past, computational simulation of structure dynamics has become more accurate, reliable
and less expensive. However, the accuracy of dynamic simulation depends on the accuracy of the
parameter of the structure. A real mechanical system usually consists of many components
connected together through different joints (for example, sliding joint, bolted joint, etc.). The
dynamic parameters of the joints generally are very difficult to know by theoretical methods.
Therefore, great efforts have been made in the field of experimental parameters identification in
the past. Some of the identification methods were developed to identify the parameters of the
whole structure [1–7], some methods were specially developed for the identification of joint
parameters [8–17]. Here only the methods to identify the joint parameters will be discussed.
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Basically, there are two different approaches to identify the joint properties, one is the model-
based approach; the other is the pure experimental approach. The model-based approach used
both the experimental data and the theoretical model by the finite element methods (FEM) to
identify the joint parameters [8–13]. The basic principle of the model-based approach is to
minimize the error between the FEM model and the experimental data with different techniques
or algorithms. The model-based approach has its advantages, for instance, many kinds of FEM
software are available in the market, and FEM becomes a standard method for structure analysis.
However, some modelling error may be introduced in the theoretical model by the finite element
approximation, especially the damping property of the structure. One knows that the stiffness and
mass properties of a structure generally can be accurately generated by the FEM, but the damping
property of a structure (not include the joint to be identified) generally cannot be generated
accurately by the FEM. The pure experimental approach uses only the experimental data to
identify the joint parameters [14–17]. Although the pure experimental approach can use the
experimental data in time domain or frequency domain to identify the joint parameters, the
frequency response functions (FRFs) are widely used in this approach. The main advantage of the
pure experimental approach is that the theoretical modelling error of the structure can be avoided.
However, the most troublesome problem of this approach is the unavoidable noise in the
measurement data. The method proposed by Tsai and Chou [14] directly used the measured FRFs
of substructures and the whole structure to extract the joint parameters. The method [14] is very
simple and can avoid the theoretical modelling error of the structure. However, the results showed
that the method practically had serious problem due to the unavoidable noise in the measured
FRFs. Because there are many advantages to use the FRFs directly to extract the joint
parameters, two different methods [15,16] have been proposed to minimize the effect of noise in
the measured FRFs. Although the methods [15,16] work well under normal conditions, and also
have been applied successfully to identify the joint parameters of real machines [18,19], our long-
term experiences show that the methods [15,16] may identify false results in some situations. The
situations are:

(1) If the noise distribution is Gaussian or near Gaussian with zero mean value, the methods
work well. However, if the noise distribution is non-Gaussian or Gaussian with mean value
(DC bias), the identified results become worse.

(2) If the orders of magnitude of the joint parameters are different significantly, the joint
parameters cannot be identified with reasonable accuracy, especially the smallest parameter.

In this work, a new identification algorithm is proposed to improve the identified results under
the above conditions. Although the method proposed in this work also uses the measured FRFs
to identify the joint parameters, and is the same as the previous works [15,16], for reference
convenient, the theoretical formulation in the next section begins from the basic theory.

2. Theoretical formulation

A real mechanical system usually consists of many components connected together by different
joints. Therefore, it is easy to divide the whole structure into substructures from the joints to be
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identified. For simplicity, in the following formulation the whole structure is divided into two
substructures from the joints to be identified, as shown in Fig. 1. It is assumed that the joints can
be modelled as linear spring and damper elements, as indicated by ki and di in Fig. 1. The
objective of parameter identification is to extract the joint parameters from the frequency response
functions (FRFs) of the whole structure and substructures. With the definition of FRFs, the
relation between the displacement vectors and force vectors of substructures 1 and 2 (see Fig. 1)
can be written as

fXeg

fXag

( )
¼

½Hee�1; ½Hea�1
½Hae�1; ½Haa�1

" #
fFeg1

fFag1 þ fFjg1

( )
; ð1Þ

fXbg

fXcg

( )
¼

½Hbb�2; ½Hbc�2
½Hcb�2; ½Hcc�2

" #
fFbg2 þ fFjg2

fFcg2

( )
; ð2Þ

where fXag and fXbg represent the displacement vectors on the joint interfaces of substructures 1
and 2, respectively; fXeg and fXcg represent the displacement vectors on all other regions except
the joint interfaces of substructures 1 and 2. The vectors fFjg1 and fFjg2 represent the joint
internal force vectors acting on substructures 1 and 2. The vectors fFag1 and fFeg1 represent the
external force vectors acting on substructure 1, while the vectors fFbg2 and fFcg2 represent the
external force vectors acting on substructure 2. The force vectors fFjg1 and fFjg2 are equal in
magnitude and opposite in direction, i.e.,

fFjg1 ¼ 	fFjg2: ð3Þ

The interface displacement vectors fXag and fXbg are related to the joint force vector by a transfer
function ½Hj�

fXbg 	 fXag ¼ ½Hj�fFjg1 ð4Þ
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Fig. 1. A structure including two substructures connected by joints, k1; d1;y; kn; dn:
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with

½Hj� 
 ½Pj�	1 ¼

k1 þ jod1 0; 0; ? 0

0 k2 þ jod2; 0; ? 0

0 ^ & ^

^ ^ & ^

0 0 kn þ jodn

2
6666664

3
7777775

	1

;

where j ¼
ffiffiffiffiffiffiffi
	1

p
and k1; k2;y; kn; d1; d2;y; dn are the spring and damping coefficients of the joint.

If the whole structure is considered, the relation between the displacement vector and the force
vector can be expressed as

fXeg

fXag

fXbg

fXcg

8>>><
>>>:

9>>>=
>>>;

¼

½Hee�; ½Hea�; ½Heb�; ½Hec�

½Hae�; ½Haa�; ½Hab�; ½Hac�

½Hbe�; ½Hba�; ½Hbb�; ½Hbc�

½Hce�; ½Hca�; ½Hcb�; ½Hcc�

2
6664

3
7775 �

fFeg1
fFag1
fFbg2
fFcg2

8>>><
>>>:

9>>>=
>>>;
: ð5Þ

As derived in the previous work [15], the FRFs of the whole structure in Eq. (5) can be expressed
in terms of the FRFs of the substructures and the joint matrix ½Hj� in Eq. (4). For instance,

½Hee� ¼ ½Hee�1 	 ½Hea�1½HB�	1½Hae�1; ð6aÞ

½Haa� ¼ ½Haa�1 	 ½Haa�1½HB�	1½Haa�1; ð6bÞ

½Hba� ¼ ½Hbb�2½HB�	1½Haa�1;

^

^ ð6cÞ

with

½HB� ¼ ½Haa�1 þ ½Hbb�2 þ ½Hj�: ð7Þ

Eq. (6) contains three different matrices, i.e., the FRFs of the substructures, the FRFs of the
whole structure, and the joint matrix ½Hj�: Therefore, if the FRFs of the substructures and the
whole structure are known by experimental measurement, then the only unknowns in Eq. (6) are
the joint parameters in ½Hj�: Theoretically, the joint parameters can easily be obtained from
Eq. (6) from the pure mathematical point of view. For instance, one can derive the unknown
matrix ½Hj�	1 ¼ ½Pj� directly from Eq. (6b) as [14]

½Pj� ¼ ½Haa�	1½HD�½Haa�	1 ð8Þ

with

½HD� ¼ ðð½Haa�1 	 ½Haa�Þ
	1 	 ½Haa�	11 ð½Haa�1 þ ½Hbb�2Þ½Haa�	11 Þ	1:

One can find that there are many inverse operations on the matrices in Eq. (8). Consequently, a
little noise or measurement error in the FRFs will cause the identified results to be completely
faulty because of the ill-conditioned problem. In other words, Eq. (8) is correct only from pure
mathematical point of view, it cannot be applied to practical identification. To overcome the
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problem found in Eq. (8), a method with the main objective to minimize the number of inverse
operations has been proposed by Wang and Liou [15]. However, as mentioned, the previous
methods [15,16] do not work well under some conditions.
The basic idea of the new method proposed in this work is based on the understanding about

the limitations of the previous methods [15,16] according to our long-term experiences. From
Eq. (A.5) in Appendix A, the ½Pj� matrix can be solved directly as

½Pj� ¼ 	ð½Haa�1 þ ½Hbb�2Þ
	1ð½Haa�1 þ ½Hba� 	 ½Haa�Þð½Hba� 	 ½Haa�Þ

	1: ð9Þ

From Eq. (4) one knows that if all the FRF matrices in Eq. (9) are exact without any error, the
½Pj� matrix solved from Eq. (9) should be a diagonal matrix. On the contrary, if the FRF matrices
in Eq. (9) are contaminated by noise, the ½Pj�matrix solved from Eq. (24) should not be a diagonal
matrix. The new method proposed in this work is also based on Eq. (A.5), however, does not force
the ½Pj� matrix to be a diagonal matrix. To distinguish from the theoretical ½Pj� defined in Eq. (4),
a new matrix ½Pn

j � is defined as

½Pn

j � 


p1; 0; ? ? 0

0; p2 ? ? 0

^ 0 & ^

^ ^ & ^

0 ? ? ? pn

2
6666664

3
7777775

n�n

þ

d11; d12; ? ? d1n

d21; d22; ? ? d2n

^

^

dn1; dn2; ? ? dnn

2
6666664

3
7777775

n�n

¼ ½Pj�n�n þ ½E�n�n; ð10Þ

where

pi ¼ ki þ jodi; i ¼ 1; 2;y; n:

Now, the ½Pj� represents the matrix with the exact joint parameters and the ½E�matrix represents
the error matrix. If the FRF matrices in Eq. (A.5) are contaminated by noise, then the ½Pj� matrix
should be replaced by ½Pn

j �: Then, Eq. (A.5) can be expanded as

u11; u12; ? ? u1n

u21; u22; ? ? u2n

^

^

un1; un2; ? ? unn

2
6666664

3
7777775

¼

s11; s12; ? ? s1n

s21; s22; ? ? s2n

^

^

sn1; sn2; ? ? snn

2
6666664

3
7777775

pn
1 ; d12; ? ? d1n

d21; pn
2 ; ? ? d2n

^

^

dn1; dn2; ? ? pn
n

2
6666664

3
7777775

t11; t12; ? ? t1n

t21; t22; ? ? t2n

^

^

tn1; tn2; ? ? tnn

2
6666664

3
7777775
; ð11Þ

where pn
i ¼ pi þ dii
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or

s11t11 ? s11tn1

s11t12 ? s11tn2

^ & ^

s11t1n ? s11tnn

2
6664

3
7775

s12t11 ? s12tn1

s12t12 ? s12tn2

^ & ^

s12t1n ? s12tnn

2
6664

3
7775 ? ?

s1nt11 ? s1ntn1

s1nt12 ? s1ntn2

^ & ^

s1nt1n ? s1ntnn

2
6664

3
7775

^ ^

^ & ^

^ & ^

sn1t11 ? sn1tn1

sn1t12 ? sn1tn2

^ & ^

sn1t1n ? sn1tnn

2
6664

3
7775

sn2t11 ? sn2tn1

sn2t12 ? sn2tn2

^ & ^

sn2t1n ? sn2tnn

2
6664

3
7775 ? ?

snnt11 ? snntn1

snnt12 ? snntn2

^ & ^

snnt1n ? snntnn

2
6664

3
7775

2
6666666666666666666664

3
7777777777777777777775

n2�n2

�

pn
1

d12
^

d1n

8>>><
>>>:

9>>>=
>>>;

d21
pn
2

^

d2n

8>>><
>>>:

9>>>=
>>>;

^

^

dn1

^

dnðn	1Þ

pn
n

8>>><
>>>:

9>>>=
>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

n2�1

¼

u11

u12

^

u1n

8>>><
>>>:

9>>>=
>>>;

u21

u22

^

u2n

8>>><
>>>:

9>>>=
>>>;

^

^

un1

un2

^

unn

8>>><
>>>:

9>>>=
>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

n2�1

ð12Þ

or in a compact form

½AðoÞ�n2�n2fPn

r gn2�1 ¼ fBðoÞgn2�1: ð13Þ

Noting that the ½A� matrix and fBg vector contain the information of FRFs, and are function of
frequency o: The fPn

r g vector contains the joint parameters pi and the errors dij defined in
Eq. (10). If the joint parameters are frequency independent, then theoretically one only needs the
data of the FRFs at one frequency to obtain the joint parameters by

fPn

r gn2�1 ¼ ½AðoÞ�	1n2�n2fBðoÞgn2�1: ð14Þ
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However, due to the unavoidable measurement noise in the FRFs, like many existing methods,
the FRFs at many discrete frequencies should be used to minimize the noise effect by using
different algorithms. The new method proposed in this work uses the errors dij ðiajÞ as an
indicator to find the best frequencies for identification. The details are derived in what follows.
The ½A� matrix and fBg vector in Eq. (13) contain the information of FRFs. If the FRFs are

exact (free from any error or noise), the ½A� matrix is indicated as ½A0� and fBg vector is indicated
as fB0g: Theoretically, if the ½A0� and fB0g are exact, one can obtain the exact joint parameters
from Eq. (13) because there is no approximation in deriving Eq. (13). Then Eq. (13) can be written
as

½A0ðoÞ�n2�n2fPr0gn2�1 ¼ fB0ðoÞg ð15Þ

with

fPr0g ¼

p1

0

^

0

8>>><
>>>:

9>>>=
>>>;

0

p2

^

0

8>>><
>>>:

9>>>=
>>>;

^

0

^

^

pn

8>>><
>>>:

9>>>=
>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

Noting that the pi in the fPr0g vector represents the exact joint parameter, as defined in Eq. (10).
Except the exact parameters pi; all the other elements dij in fPr0g are equal to zero. If the FRFs are
contaminated by noise, then Eq. (13) can be written as

ð½A0� þ ½dA�ÞðfPr0g þ fdpgÞ ¼ fB0g þ fdBg: ð16Þ

The ½dA� matrix and fdBg vector represent the noise components in ½A� and fBg; respectively. The
vector fdpg represents the error vector of fPn

r g: It can be proved [20] that if fPn
r g is solved by

Eq. (14), then

jjfdpgjj
jjfPr0gjj

p
KðA0Þ

1	 ðKðA0ÞjjfdAgjj=jj½A0�jjÞ
jjfdBgjj
jjfB0gjj

þ
jj½dA�jj
jj½A0�jj

� �
; ð17Þ

where jj jj denotes the 2-norm of matrix or vector and KðA0Þ ¼ jj½A0�jj jj½A0�	1jj; defined as the
condition number of ½A0�: Eq. (17) shows the upper bound of the error of the parameters relative
to the exact values in terms of the relative errors of ½A� and fBg and the condition number of ½A0�:
Because ½A� and fBg are function of frequency o; the error vector fdpg is also function of o: From
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Eq. (17), one knows that if one wants to obtain an accurate result from Eq. (14), one should select
the frequencies at which the condition number of ½A0� and the relative errors of ½A� and fBg are
the smaller the better. Because one does not know the exact values of ½A� and fBg; it is impossible
to know the frequencies at which the errors fdBg and ½dA� are small. However, from Eqs. (12) and
(16) one has

jjfdpgjj ¼
Xn

j¼1

Xn

i¼1

d2ij

 !1=2

: ð18Þ

Because the upper bound of jjfdpgjj is constrained by the relation of Eq. (17), the individual value
of dij cannot be arbitrary. In other words, the dij must have some relationships among each other.
This is the basic finding of the proposed new method. As defined in Eqs. (10) and (12), the dii

represents the identified error of parameter pi and dij ðiajÞ represents the other error. Now, two
error functions are defined as

ReðEiÞ 

Xn

j¼1

ðReðdijÞÞ
2

" #1=2
for iaj;

ImðEiÞ 

Xn

j¼1

ðImðdijÞÞ
2

" #1=2
for iaj; ð19Þ

where ‘‘Re’’ and ‘‘Im’’ indicate the real part and imaginary part, respectively. Both the ReðEiÞ and
ImðEiÞ are function of frequency. One knows that if the FRFs are exact, then ReðEiÞ; ImðEiÞ; ReðdiiÞ
and ImðdiiÞ from Eq. (14) all should be equal to zero. If the FRFs are contaminated by noise, then
ReðEiÞ; ImðEiÞ; ReðdiiÞ and ImðdiiÞ must have some values; however, the ReðEiÞ plus jReðdiiÞj has
upper bound, the same for ImðEiÞ plus jImðdiiÞj: Therefore, there must be a relationship between
ReðEiÞ and jReðdiiÞj; the same for ImðEiÞ and jImðdiiÞj: Because the error in the FRFs generally is
random noise, the ReðEiÞ and jReðdiiÞj should only have a statistical relationship, not a
deterministic relationship. A typical example is given in Appendix B to show what the statistical
relationship means.
Because the errors jReðdiiÞj and jImðdiiÞj are statistically highly correlated with ReðEiÞ and ImðEiÞ;

respectively, one can select the frequencies with which the error ReðEiÞ is relatively small to
identify the parameter ki and select other frequencies with which the error ImðEiÞ is relatively small
to identify the parameter di: To explain this concept clearly, a structure with two joint parameters
are used here as an example. Eq. (14) can now be written as

p1 þ d11
d12
d21

p2 þ d22

8>>><
>>>:

9>>>=
>>>;

¼

pn
1

d12
d21
pn
2

8>>><
>>>:

9>>>=
>>>;

¼

s11t11; s11t21; s12t11; s12t21

s11t12; s11t22; s12t12; s12t22

s21t11; s21t21; s22t11; s22t21

s21t12; s21t22; s22t12; s22t22

2
6664

3
7775
	1

u11

u12

u21

u22

8>>><
>>>:

9>>>=
>>>;
: ð20Þ

Noting that p1 and p2 represent the exact joint parameters, as defined in Eq. (10). As mentioned, if
the necessary FRFs are known at some frequencies (for instance by measurement), for each
discrete frequency one can use Eq. (20) to obtain the joint parameters. However, due to the errors
in the FRFs are different at each frequency, and the condition number of the inverse matrix in
Eq. (20) is also different for each frequency, the identified parameters from each frequency are
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different. So, one can use the error ReðEiÞ and ImðEiÞ to select the ‘‘good’’ frequencies for
identification. In this example ReðE1Þ ¼ jReðd12Þj; ReðE2Þ ¼ jReðd21Þj; ImðE1Þ ¼ jImðd12Þj and
ImðE2Þ ¼ jImðd21Þj; all are function of frequencies. In other words, the errors ReðEiÞ and ImðEiÞ
are used as indicators to find the ‘‘good’’ data for identification. As to the question how many
frequencies should be used for identification is discussed in Appendix B.
In summary, the basic identification equation of the proposed method is Eq. (14) with the

selected FRFs data according to the errors ReðEiÞ and ImðEiÞ: The average values of the
parameters identified from all the selected frequencies are defined as the identified values. From
Eq. (14), the average values are defined as

fPr; avegn2�1 ¼
1

N1

XN1

j¼1

ð½AðojÞ�	1fBðojÞgÞ

 !
: ð21Þ

Here oj indicates the selected frequencies, and N1 is the total number of frequencies used for
identification.

3. Simulation results and discussions

As mentioned, the main objective of the proposed new method is to improve the accuracy of the
previous methods [15,16] at some special conditions. Therefore, the following simulations are
focused on these problems.

3.1. Definition of noise level

One knows that the most important step to obtain an accurate identification result is to measure
the FRFs correctly by considering the different equipments and procedure used [21]. However, the
measurement noise is always unavoidable. In principle, the best way to simulate the noise
contaminated FRFs is to add noise to the measurement input and output in time domain, and
then use the discrete Fourier transform to calculate the FRFs. However, the characteristics of the
noise generally are specified in frequency domain, for instance, the concept of narrow band noise,
white noise, etc. So, most of the works which use the FRFs to identify the parameters add proper
noise distribution directly in frequency domain to the FRFs.
The definition of noise level is the same as that defined in Ref. [15]. However, the random noise

used in Ref. [15] was Gaussian distribution with zero mean, the noise used in this work was
Gaussian distribution with certain mean value. As well known, the Gaussian distribution is
determined by two parameters, i.e., the mean value %m and the standard deviation s: If the HijðoÞ
represents the FRF between the ith and jth degrees of freedom of the structure, then the noise
level g is defined as [15]

g2 ¼ s2=jHijðoÞj2max; ð22Þ

where jHijðoÞjmax is the maximum absolute value of HijðoÞ in the frequency range of interest.
Therefore, if a mean value %m and noise level g are given, a set of random number with Gaussian
distribution can be generated by a computer program. Noting that the FRFs are complex; two
sets of random noise were added to the real and imaginary parts of the FRF, respectively. In the
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following simulations, different mean values and different noise levels will be used to show the
difference between the new method and the previous methods.

3.2. Simulated structure

The simulated structure consists of two parallel beams connected together through three linear
joints, as shown in Fig. 2. The whole system was approximated by 14 finite beam elements. It was
assumed that the beams possessed structural damping proportional to the mass and stiffness
matrices. It was assumed that the joints parameters, k1; k2; k3; d1; d2 and d3 should be identified.
Therefore, the whole structure was divided into two substructures from these joints. In order to
simulate the FRFs obtained from experimental measurement, the maximum frequency of interest
and the frequency resolution of the FRF spectrum were set to be 2000 and 5 Hz; respectively. In
other words, there are 400 discrete frequencies in each FRF spectrum.

3.3. Simulation results and discussions

In the following simulations, three different noise distributions and two sets of joint parameters
will be used, as shown in Tables 1 and 2. One can find that the stiffness parameters in the first set
are same order of magnitude while the stiffness parameters in the second set are different in order
of magnitude. As mentioned, there are 400 discrete frequencies in each FRF spectrum, then m in
Eq. (A.11) is then equal to 400. The number N in Eq. (A.12) is then equal to 200. As to the
proposed new method, forty frequencies (i.e., N1 ¼ 40 in Eq. (21)) are selected from the 400
frequencies by using the ReðEiÞ and ImðEiÞ as indicators, see the details in Appendix B.

Case 1: In this example, the noise distribution is D1 and the joint parameters are set 1 (S1). The
results identified from Eq. (A.11), Eqs. (A.12) and (21) are shown in Table 3. Although the error
from method [15] is somewhat larger, especially the error of damping, the identified results from
all the three methods are accurate enough for engineering application. The results also
demonstrate again that if the noise distribution is Gaussian with zero mean and the order of
magnitude of the parameters is the same, then the previous methods [15,16] are accurate enough
for practical application. The results of Table 3 will be used as a base for comparison with other
cases in what follows.

Case 2. In this case, the noise distribution is D2 and the joint parameters are set 1 (S1). The
difference between this case and case 1 is the noise distribution with mean value in this case. The
mean value of a random noise is to simulate a constant measurement error (or called DC bias) for
all the frequencies. For instance, if the measurement system is not correctly calibrated, then the
measured FRFs may be contaminated by certain constant error for all the frequencies.
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To show the effect of noise on the FRFs, a typical FRF is shown in Figs. 3 and 4. Fig. 3 is the
exact FRF of point 3 (see Fig. 2) of the whole structure, while Fig. 4 is the FRF contaminated by
the noise. Because the constant error is only about 0.1% of the maximum value of the FRF, it is
difficult to find out in the figure. However, the 5% random noise can easily be seen in Fig. 4. The
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Table 1

Three different noise distributions

Noise parameters

Distributions Noise level n (%) Mean value %m (%)

D1 (Gaussian) 5 0

D2 (Gaussian with DC Bias) 5 0.1 of jHijðoÞjmax

D3 (Non-Gaussian) 5

Multiplied by a

frequency-dependent function

Table 2

Two sets of joint parameters of the simulated structure

Parameters Set 1 Set 2

k1 ðN=mÞ 1,000,000 10,000,000

k2 ðN=mÞ 2,000,000 200,000

k3 ðN=mÞ 1,500,000 50,000,000

d1 ðN s=mÞ 100 1000

d2 ðN s=mÞ 200 200

d3 ðN s=mÞ 150 1500

Table 3

Identified results of case 1

Parameters Exact value Identified value Identified value Identified value

by Eq. (A.11) by Eq. (A.12) by Eq. (21)

(error%) (error%) (error%)

k1 ðN=mÞ 1,000,000 1038024 1021356 986740

(3.8%) (2.13%) (1.32%)

k2 ðN=mÞ 2,000,000 2120314 2010573 2005681

(6.01%) (0.52%) (0.28%)

k3 ðN=mÞ 1,500,000 1561209 1541829 1486695

(4.08%) (2.78%) (0.88%)

d1 ðN s=mÞ 100 92 103 103

(8.00%) (3.00%) (3.00%)

d2 ðN s=mÞ 200 172 195 206

(14.00%) (2.50%) (3.00%)

d3 ðN s=mÞ 150 137 146 153

(8.67%) (2.67%) (2.00%)
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results identified by the three methods are listed in Table 4. The result identified by Eq. (A.11) [15]
has significant error in comparison with other two methods. This is due to the fact that the least-
squares method cannot effectively smooth the random noise with certain mean value. Although
the method [16] (i.e., Eq. (A.12)) also cannot effectively smooth the random noise with certain DC
bias, the method takes the condition number of the inverse matrix into consideration, and as a
result, the error cause by ill-condition of the matrix can be reduced. That is why the result
identified by Eq. (A.12) is better than that by Eq. (A.11). The results of Table 4 also demonstrate
that the proposed new method can extract the joint parameters with best quality from the FRFs
contaminated by random noise and DC bias.
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Fig. 3. A typical FRF without error.
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Fig. 4. The FRF in Fig. 3 contaminated by noise.
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Case 3: In this case, the noise distribution is D3 and the joint parameters are set 1 (S1). The
noise distribution is no more a Gaussian distribution. The noise distribution was generated by the
following two steps:

(1) Giving the noise level 5% and using Eq. (22) to find the standard deviation s: With the
standard deviation s; and mean value %m ¼ 0; a set of random noise with Gaussian
distribution was generated.

(2) The noise with Gaussian distribution was then multiplied by a frequency-dependent function.

Fig. 5 shows an example of the noise generated by the above procedure. The noise level is not
uniformly distributed along the frequency axis, i.e., the noise level is larger at high frequency than
at low frequency. It is easy to generate different types of random noise with non-Gaussian
distribution. The noise distribution used in this case is just an arbitrary type. The identified results
are listed in Table 5. One can find that the results identified by the previous methods [15,16] are
unacceptable. Although the method [16] has taken the condition number of the ½Q� matrix into
consideration, the order of error is the same as another method [15]. The reason for it can be
explained as follows. As shown in Eq. (17), the upper bound of the error identified by Eq. (A.12)
depends on the condition number of ½Q� and the relative measurement errors (noise) in ½Q� and
fUg: Because the method [16] only uses the condition number of ½Q� to select frequencies for
identification, it can happen that the measurement noise in ½Q� and fUg is very large at the
selected frequencies. From the result of Eq. (17) one knows that both the condition number and
the noise in the FRFs should be considered in order to obtain an accurate result. However, so far
no method can know the noise level at each frequency of the FRFs. Consequently, it is impossible
to select the frequencies with less measurement noise for identification. The new method proposed
in this work uses the ReðEiÞ and ImðEiÞ as indicators to select the frequencies (40 frequencies from
400 frequencies) at which the right hand side of Eq. (17) has smallest value among all the
frequencies. That is why the result identified by the proposed new method is very accurate.
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Table 4

Identified results of case 2

Parameters Exact value Identified value Identified value Identified value

by Eq. (A.11) by Eq. (A.12) by Eq. (21)

(error%) (error%) (error%)

k1 ðN=mÞ 1,000,000 1114174 1051533 975662

(11.41%) (5.15%) (2.43%)

k2 ðN=mÞ 2,000,000 1740436 2127693 1901837

(12.97%) (6.38%) (4.90%)

k3 ðN=mÞ 1,500,000 1639910 1408662 1557789

(9.32%) (6.08%) (3.85%)

d1 ðN s=mÞ 100 78 104 97

(22.00%) (4.00%) (3.00%)

d2 ðN s=mÞ 200 228 216 185

(14.00%) (8.00%) (7.50%)

d3 ðN s=mÞ 150 119 140 155

(20.67%) (6.67%) (3.33%)
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The results of Tables 3–5 demonstrate that the proposed new method is superior to the previous
methods. Of cause, the identified results of the new method will also become worse with higher
noise level.

Case 4: The noise distribution is the same as case 2 (i.e., D2); however, the joint parameters are
set 2 (S2). This example is used to show the difficulty when the orders of magnitude of the
parameters are different significantly. The identified results are shown in Table 6. One finds that
the results identified by the previous methods are unacceptable. In comparison with the results of
Table 4, there are two factors which make the results of Tables 4 and 6 so different. The first
factor is that the stiffness of k1 and k3 in this case becomes stiffer so that the relative defection at
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Table 5

Identified results of case 3

Parameters Exact value Identified value Identified value Identified value

by Eq. (A.11) by Eq. (A.12) by Eq. (21)

(error%) (error%) (error%)

k1 ðN=mÞ 1,000,000 1399894 1442905 1009216

(39.98%) (44.29%) (0.92%)

k2 ðN=mÞ 2,000,000 3008194 2874634 2062468

(50.40%) (43.73%) (3.12%)

k3 ðN=mÞ 1,500,000 2110821 2292620 1533882

(40.72%) (52.84%) (2.25%)

d1 ðN s=mÞ 100 172 202 104

(72.00%) (102.00%) (4.00%)

d2 ðN s=mÞ 200 436 380 215

(118.00%) (90.00%) (7.50%)

d3 ðN s=mÞ 150 245 279 152

(63.33%) (86.00%) (1.33%)

Fig. 5. The noise with non-Gaussian distribution.
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the joint interfaces becomes smaller in the frequency range of simulation 0–2 kHz: Physically, if
the joint stiffness becomes stiffer, the variation of the joint parameters has less effect on the
variation of the FRFs, or, the sensitivity of the joint parameters to the FRFs becomes smaller in
the frequency range 0–2 kHz: Consequently, the parameters are more difficult to identify from the
FRF data. The second factor is that Eq. (A.11) (the same for Eq. (A.12)) uses the same data to
identify all the parameters ki and di: Theoretically, one should use different data (the most
sensitive data) to identify different parameters, especially when the orders of magnitude of the
parameters are different. The only question is how one can find different sets of data for the
identification of different parameters. The new method proposed in this work uses ReðEiÞ to select
the best data to identify ki; and uses ImðEiÞ to select the best data to identify di: There are six
parameters, i.e., k1; k2; k3; d1; d2 and d3; to be identified, six different sets of data are used in the
new method. This is the reason why the new method is superior to other two methods.

Case 5: In this case, the noise distribution is non-Gaussian distribution (D3) and the joint
parameters are set 2. This example is to simulate the worst conditions which may be encountered
in practical application. The identified results are listed in Table 7. One can see that the results
identified by Eqs. (A.11) and (A.12) are very poor, especially the smallest parameters, i.e., k2 and
d2: These results are expected because the conditions used in this case are designed to expose the
two main situations which may make the previous methods to collapse. The results of Table 7 also
demonstrate that the proposed new method can overcome the limitations of previous methods,
and result in an accurate result under serious conditions. It should be emphasized that one can
generate many different types of noise with non-Gaussian distribution. As far as we have tested,
the proposed new method always can identify a better result than that by other two methods.
The experimental procedure of the new method is exact the same as that of the previous

methods, i.e., one only needs to measure the necessary FRFs of the two substructures and the
whole structure. The feasibility of the experimental procedure has been verified not only in the
previous works [15,16], the same experimental procedure has also been used successfully to
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Table 6

Identified results of case 4

Parameters Exact value Identified value Identified value Identified value

by Eq. (A.11) by Eq. (A.12) by Eq. (21)

(error%) (error%) (error%)

k1 ðN=mÞ 10,000,000 2299513 11497137 9554416

(77.0%) (14.97%) (4.45%)

k2 ðN=mÞ 200,000 8629417 5662639 188126

(4214.70%) (2731.31%) (5.93%)

k3 ðN=mÞ 50,000,000 38416040 25028426 51892310

(23.16%) (49.94%) (3.78%)

d1 ðN s=mÞ 1000 200 1764 1043

(80.00%) (76.40%) (4.30%)

d2 ðN s=mÞ 200 3726 671 217

(1764.50%) (235.50%) (8.50%)

d3 ðN s=mÞ 1500 6392 2145 1453

(326.13%) (43.00%) (3.13%)

J.H. Wang, S.C. Chuang / Journal of Sound and Vibration 273 (2004) 295–316 309



identify different joint parameters [20,21]. Although only simulation results are discussed in this
work, it is believed that the conclusion from the experimental results must be same as that from
the simulation results.

4. Conclusions

The properties of mechanical joints are very difficult to know by theoretical methods, and
generally should be identified by experiments. A new method is proposed in this work to identify
the joint parameters directly from the FRFs of the substructures and the whole structure. The
problem of the measurement noise with non-Gaussian distribution in the FRFs, and the problem
of joints with very different orders of magnitude are especially discussed in this work. The new
method uses an error function to select different sets of best data to identify different joints so that
the new method can function well under different conditions. The simulation results demonstrate
that the proposed new method can always identify the joint parameters with reasonable accuracy
even when the results identified by other two existing methods are completely faulty under some
strict conditions. The main limitation of the new method is that the joint parameters should be
linear. Further efforts could be aimed at applying the method to identify the parameters of joint
with a more general model, such as Ref. [22].
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Table 7

Identified results of case 5

Parameters Exact value Identified value Identified value Identified value

by Eq. (A.11) by Eq. (A.12) by Eq. (21)

(error%) (error%) (error%)

k1 ðN=mÞ 10,000,000 18224369 8075138 10473291

(82.24%) (19.24%) (4.73%)

k2 ðN=mÞ 200,000 12290163 308887 184337

(6045.08%) (54.44%) (7.83%)

k3 ðN=mÞ 50,000,000 96758735 67349871 48753197

(93.51%) (34.69%) (2.49%)

d1 ðN s=mÞ 1000 6150 1303 953

(515.00%) (30.30%) (4.70%)

d2 ðN s=mÞ 200 2459 362 217

(1129.50%) (81.00%) (8.50%)

d3 ðN s=mÞ 1500 7828 2135 1428

(421.86%) (42.33%) (4.80%)
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Appendix A

To show clearly the difference between the method proposed in this work and the previous
works [15,16], the mathematical formulations of the previous works are given briefly here.
The first step to minimize the inverse operations is to make difference between Eqs. (6b) and

(6c), i.e.,

½Hba� 	 ½Haa� ¼ ½Hbb�2½HB�	1½Haa�1 	 ½Haa�1 þ ½Haa�1½HB�	1½Haa�1
¼ 	 ½Hj�½HB�	1½Haa�1 ðA:1Þ

or

	½HB�	1½Haa�1 ¼ ½Hj�	1ð½Hba� 	 ½Haa�Þ ¼ ½Pj�ð½Hba� 	 Haa�Þ ðA:2Þ

Multiplying Eq. (A.2) by ð½Haa�1 þ ½Hbb�2Þ results in

	ð½Haa�1 þ ½Hbb�2Þ½HB�	1½Haa�1 ¼ ð½Haa�1 þ ½Hbb�2Þ½Pj�ð½Hba� 	 ½Haa�Þ: ðA:3Þ

From Eq. (7), since ½Haa�1 þ ½Hbb�2 ¼ ½HB� 	 ½Hj�; Eq. (A.3) can be written as

	½Haa�1 þ ½Hj�½HB�	1½Haa�1 ¼ ð½Haa�1 þ ½Hbb�2Þ½Pj�ð½Hba� 	 ½Haa�Þ: ðA:4Þ

Substituting Eq. (A.1) into the left hand side of Eq. (A.4) gives

	ð½Haa�1 þ ½Hba� 	 ½Haa�Þ ¼ ð½Haa�1 þ ½Hbb�2Þ½Pj�ð½Hba� 	 ½Haa�Þ: ðA:5Þ

The second step to minimize the matrix inverse operation is to expand Eq. (A.5) as

u11; u12; ? ? u1n

u21; u22; ? ? u2n

^

^

un1; un2; ? ? unn

2
6666664

3
7777775
¼

P
s1iti1pi;

P
s1iti2pi; ? ?

P
s1itinpiP

s2iti1pi;
P

s2iti2pi; ? ?
P

s2itinpi

^

^P
sniti1pi;

P
sniti2pi; ? ?

P
snitinpi

2
6666664

3
7777775

for i ¼ 1; 2;y; n;

ðA:6Þ

where pi ¼ ki þ jodi; and n is the number of the joints in Fig. 1. Noting that ½Pj� is a diagonal
matrix, as shown in Eq. (4). From Eq. (A.6), the diagonal terms were suggested in Ref. [15] to
extract the parameters pi; i.e.,

u11

u22

^

^

unn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;


 U

8><
>:

9>=
>;

n�1

s11t11; s12t21; ? ? s1ntn1

s21t12; s22t22; ? ? s2ntn2

^

^

sn1t1n; sn2t2n; ? ? snntnn

2
6666664

3
7777775

n�n

p1

p2

^

^

pn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

n�1

ðA:7Þ

or in a compact form as

fUgn�1 
 ½Q�n�nf %Pgn�1: ðA:8Þ

One can find in Eq. (A.8) that the joint parameters f %Pg can be found only with one inverse
operation on the ½Q� matrix. The difference between Eqs. (8) and (A.8) is very significant. Noting
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that the vector fUg and the matrix ½Q� are function of frequency and contain the information of
the FRFs of the whole structure and the substructures. If the joint parameters are constant
(frequency independent), then theoretically the FRFs only at one frequency should be used to
extract the joint parameters. However, in order to smooth the random noise, the FRFs at many
frequencies should be used in practice. For instance, if the FRFs are known at some discrete
frequencies, o1;o2;y;om; then for each frequency one has a set of n simultaneous equation like
Eq. (A.8), the total equation can be written as

fUðo1Þgn�1

fUðo2Þgn�1

^

fUðomÞgn�1

8>>><
>>>:

9>>>=
>>>;

mn�1

¼

½Qðo1Þ�n�n

½Qðo2Þ�n�n

^

½QðomÞ�n�n

2
6664

3
7775 %P

8><
>:

9>=
>;

n�1

ðA:9Þ

or in a compact form

f %Ugmn�1 ¼ ½ %Q�mn�nf %Pgn�1: ðA:10Þ

The least-squares method can then be used to obtain the joint parameter as

f %Pgn�1 ¼ ð½ %Q�H � ½ %Q�Þ	1½ %Q�Hf %Ugmn�1; ðA:11Þ

where ½ %Q�H represents the conjugate transposed matrix of ½ %Q�:
Eq. (A.11) is the identification equation proposed in Ref. [15], and will be used to compare with

the new method proposed in this work. If the FRFs are measured with an FFT analyzer, then
generally there are 400 or 800 discrete frequencies in each FRF spectrum. The method [15] used all
the data of the FRFs at 400 or 800 discrete frequencies to identify the parameter without any
selection. On the contrary, the method proposed in Ref. [16] used the condition number of the ½Q�
matrix in Eq. (A.8) to select the ‘‘well-conditioned’’ data for identification. If the FRFs are
measured at some discrete frequencies, o1;o2;y;om; then one can find the condition number of
½Q� matrix for each frequency. If the average value of the condition number found at the m

frequencies is denoted by Cm; then the ½Q� matrix with condition number lower than Cm is defined
as ‘‘well-conditioned’’ data [16], and used to identify the joint parameters from Eq. (A.8) by direct
matrix inverse in each frequency. In other words, if m is the number of the discrete frequencies, the
number of frequencies used for identification is m=2: The average values of the identified
parameters from the m=2 frequencies are defined as the final identified values. In order to compare
the method [16] with the new method proposed in this work, the equation used in Ref. [16] is given
here as

f %Pavegn�1 ¼
1

N

XN

j¼1

ð½QðojÞ�	1fUðojÞgÞ

 !
; ðA:12Þ

where oj indicates the frequencies selected by the method [16], and N is the total number of
frequencies used for identification.
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Appendix B

In this appendix, the structure and noise distribution of case 2 in the main text is used as an
example to show the statistical relationship between ReðEiÞ (or ImðEiÞÞ and jReðdiiÞj (or jImðdiiÞjÞ:
The selection criteria of the number of frequencies used for identification are also discussed in this
appendix.
As mentioned, there are 400 discrete frequencies in each FRF spectrum. For simplicity, we

discuss only the relationship between ReðEiÞ and jReðdiiÞj: For each frequency ok; one can obtain a
set of data ðReðEiðokÞÞ; jReðdiiðokÞÞjÞ from the result of Eq. (14). Noting that in practical
experiment one can only know the ReðEiðokÞÞ and cannot know the ReðdiiðokÞÞ: However, in the
simulation one can know the ReðdiiðokÞÞ because one knows the exact values of the joint
parameters. If a x–y rectangular co-ordinate is used, and the horizontal x-axis represents the value
of ReðEiÞ and the vertical y-axis represents the value of ReðdiiÞ; then each data set
ðReðEiðokÞÞ; jReðdiiðokÞÞjÞ is a data point in the x–y plane. Therefore, from 400 frequencies there
are 400 points in the x–y plane, as shown in Fig. 6 for i ¼ 1: Noting that in this simulation case,
i ¼ 1; 2; 3: For i ¼ 2; and 3, one can find the same characteristics like Fig. 6. To show the
statistical relationship between ReðEiÞ and jReðdiiÞj; ReðEiÞ and jReðdiiÞj are considered as two
random variables, indicated as a; and b: The correlation coefficient of two random variables is
defined as [23]

rab ¼
E½ða 	 maÞðb 	 mbÞ�

sasb

;

where sa and sb represent the standard deviations of a and b; respectively; ma and mb represent the
mean values of a and b; respectively; E½ða 	 maÞðb 	 mbÞ� represents the expect value (mean value)
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of ½ða 	 maÞðb 	 mbÞ�: One knows that 0pjrabjp1: The correlation coefficient of the two random
variables in Fig. 6 is 0.9868. In other words, ReðE1ðokÞÞ and jReðd11ðokÞÞj are statistically highly
correlated. That means if one chooses a frequency with which the ReðE1Þ is very small (among
other frequencies), then the possibility of jReðd11Þj with very small value is very high. The jReðd11Þj
represents the error (absolute value) of the identified k1: Therefore, one can choose some
frequencies with which the ReðE1Þ has relative small value (among the 400 frequencies) to identify
k1; and the average value from these frequencies is defined as the identified value of k1; as defined
in Eq. (21).
The relationship between the ImðE1Þ and jImðd11Þj is the same as that discussed above. Therefore,

one can use the ImðE1Þ as an indicator to select the frequencies to identify d1: That is why the
proposed new method uses the ReðEiÞ as an indicator to select frequencies to identify ki; and uses
ImðEiÞ as an indicator to select frequencies to identify di: It should be emphasized that the new
method uses data at different frequencies to identify different parameters. This is the very
important feature of the new method. That is why the proposed new method can adapt itself to
handle different conditions. As to the question how many frequencies of FRFs should be used to
identify each parameter, 10% of the measured frequencies and at least 40 frequencies are
recommended in this work. That means the number of discrete frequencies at each FRF spectrum
should not be less than 400 in order to select the best 10% (40 frequencies) data for identification.
Of course, this recommendation is not very strict, some more or less data are acceptable. The basic
rules are :(1) the number of the measured frequencies of the FRFs should be large enough in order
to have enough data base to select the best data for identification, (2) the number of the selected
frequencies should be kept to a minimum value (i.e., only the best data are selected), but should be
large enough to show the statistical linear relationship between ReðEiÞ and jReðdiiÞj: Based on these
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Fig. 7. The statistical relationship between the forty smallest values of ReðE1ðokÞÞ and the corresponding jReðd11ðokÞÞj:
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basic rules, different types of structure and noise distribution have been investigated, and the final
recommended values are: the number of the measured frequencies should be larger than 400, and
the number of the selected frequencies should be about 10% of total measured frequencies. If the
FRFs are measured with standard spectrum analyzer, generally there are 400 or 800 discrete
frequencies in each spectrum. Then, 40 or 80 frequencies should be used for the identification of
each joint parameter. Fig. 7 shows the relationship between the smallest 40 data of ReðE1Þ and the
corresponding jReðd11Þj of Fig. 6. The correlation coefficient between the ReðE1Þ and jReðd11Þj is
0.966. It indicates that 40 frequencies is enough to guaranty a statistical linear relationship
between ReðE1Þ and jReðd11Þj:
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